Pick x-values (be smart) and build a table to find the corresponding y-values. Then graph the quadratic function.

1)
$$y = (x-3)^2 + 1$$

2)
$$y = -(x+4)^2 + 6$$

Graphing a quadratic equation in Vertex Form

$$y = A(x - h)^2 + k$$

3) Step 1: Find the Vertex.

Since the equation is in Vertex Form, the vertex will be at the point (h, k).

Step 2: Identify the Axis of Symmetry.

Axis of Symmetry is the *x*-value of the vertex: x = h.

Step 3: Identify the Maximum or Minimum Value.

Maximum/Minimum is the y-value of the vertex: max/min: y = k

Step 4: Find the *y*-intercept.

To find the *y*-intercept, plug in x = 0 and solve for *y*.

Step 5: Find the *x*-intercept(s).

To find the x-intercept, plug in y = 0 and solve for x. You can solve for x by using the square root principle or the quadratic formula.

Step 6: Graph the parabola using the points found in steps 1-4.

Graph the quadratic equation and identify all key features.

4)
$$y = (x-1)^2 - 1$$

5)
$$y = -(x-4)^2 + 4$$

6)
$$y = 2(x+3)^2 - 8$$

7)
$$y = -\frac{1}{2}(x+2)^2 + 6$$

- 8) How can you find the exact values of the *x*-intercepts? What is the *y*-value for any point that crosses the *x*-axis?
- 9) Why does $\sqrt{9} = 3$ and $\sqrt{9} = -3$?

Graph the quadratic equation and identify all key features of the function.

10)
$$y = (x+1)^2 - 3$$

11)
$$y = -2(x+1)^2 + 5$$

12)
$$y = \frac{1}{2}(x-2)^2 + 3$$

13)
$$y = -\frac{1}{2}(x+4)^2 + 2$$

14)
$$y = 2(x+1)^2 - 2$$

15)
$$y = -(x+2)^2 - 2$$

