Day 1 Homework--NO CALCULATORS

Simplify each in terms of i.

1)
$$6\sqrt{-54}$$

2)
$$\sqrt{-72}$$

3)
$$-\sqrt{-100}$$

4)
$$-3\sqrt{80}$$

5)
$$-\sqrt{24a^2}$$

6)
$$-\sqrt{64b^2}$$

Find the radical that simplified into the following imaginary number. (Hint: backwards of what you did in 1-6)

8)
$$5i\sqrt{5}$$

Identify the real and imaginary terms of each complex number by BOXING the real part and CIRCLING the imaginary part.

9)
$$64 - 7i$$

Simplify. THEN Identify the real and imaginary terms of your answer by BOXING the real part and CIRCLING the imaginary part.

11)
$$(2-4i)-(-3-6i)$$

12)
$$(-7+i)-(-3+8i)$$

13)
$$(8+4i)+(4+2i)$$

14)
$$(2+i)-(3+8i)$$

15)
$$(-7-4i)^2$$

16)
$$(7+6i)(-2-2i)$$

17)
$$(1+4i)(-6+2i)$$

18)
$$(-6+6i)(-1-5i)$$

Find the conjugate of each complex number below. Then multiply the conjugates together to verify your answer.

19)
$$-1 - 3i$$

$$20) -1$$

21)
$$3 - 5i$$

22)
$$2 + i$$

23)
$$3 + \sqrt{3}$$

24)
$$4 - \sqrt{6}$$

25) Bonus:
$$-7 + 5i\sqrt{2}$$

26) Classify this polynomial based on the number of terms and degree. $3x + x^3 - 2$